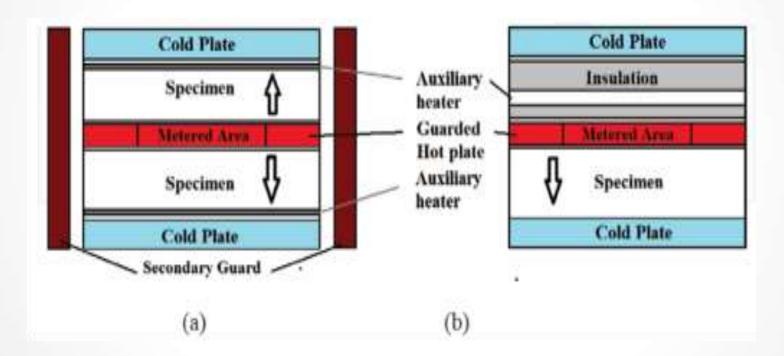
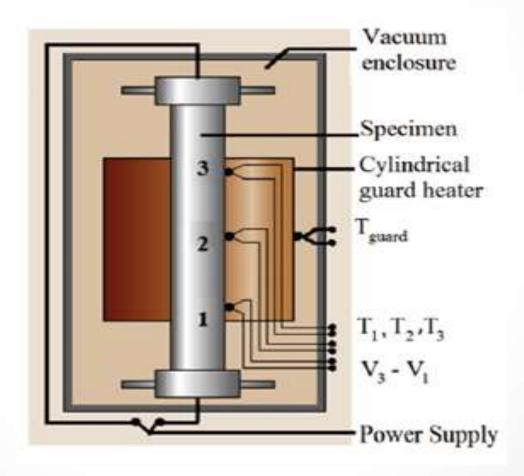
اختراع جهاز قياس معدل الانتقال الحراري عبر أسطح المواسيرللمفاضلة بين المراجل قبل الشراء

مهندس/محمد أحمد عبدالله حجازى شركة القاهرة لتكرير البترول الإدارة العامة للتكنولوجيا والتطوير (معمل طنطا)

الخواص الحرارية للمواد


- تستخدم طرق القياس لتعيين العديد من الخواص الحرارية كالآتى
 - خواص الإنتقال الحرارى مثل
- Thermal conductivity, thermal diffusivity or specific heat capacity, characterizing the ability of materials to conduct, transfer, store and release heat.

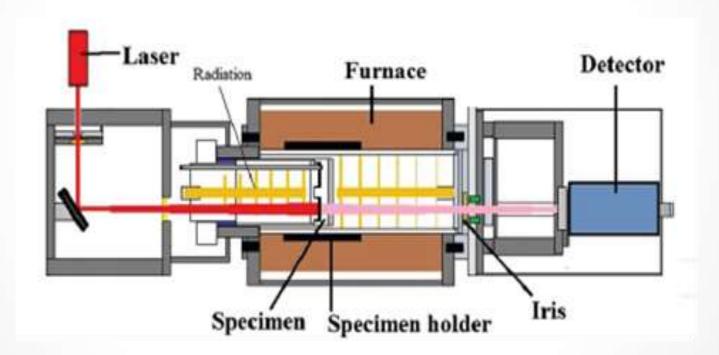
أهم طرق قياس الخواص الحرارية للمواد


- Steady State Direct Methods
- Transient Methods

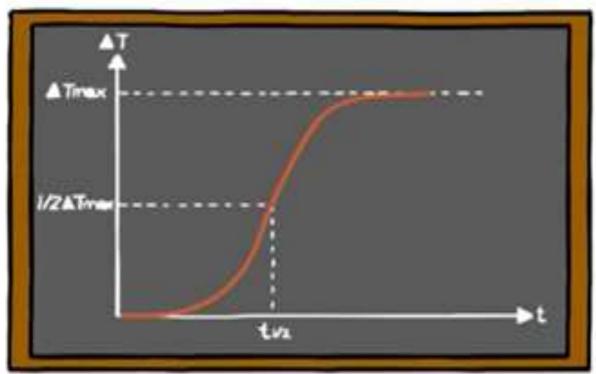
أولاً Steady State Direct Methods

Guarded Hot Plate

Direct heating method



Direct heating method equation


$$k \frac{V_{k}A}{I_{k}l} = \frac{\left(V_{3} - V_{1}\right)^{2}}{4\left[2T_{2} - \left(T_{1} + T_{3}\right)\right]}$$

ثانیا Transient Methods

laser Flash Method

تعيين معامل الانتشار للعينة

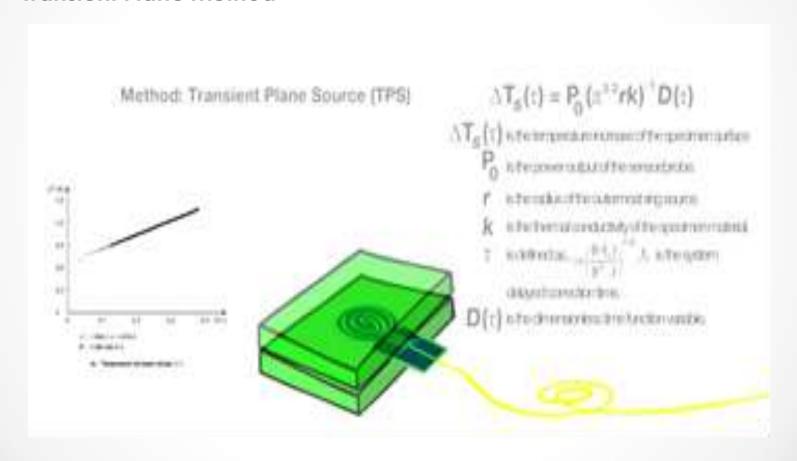
 $\alpha = 0.1388 \cdot L/t_{ax}$

Where:

(I = thermal diffusivity in cm2/S

L = thickness of test specimen at temperature of measurement in cm.

\$172 = time at 50% of maximum temperature increase, measured at the rear surface of the specimen in seconds.


تعيين التوصيلية الحرارية

$$\alpha = 0.138 \frac{d^2}{t_{1/2}} \rightarrow \alpha = \frac{k}{\varrho c_p}$$

α Thermal DiffusivityK Thermal ConductivityQ DensityCp Specific Heat

المجموعة الثانية من طرق القياس

Transient Plane Method

اختيار التجهيزات الخاصة بكل تجربة

	Metal alloy	Dense ceramic	Steel	Ceramic	Polymer	Insulating material
Thermal conductivity [W/(m·K)]	170	40	14	1,5	0,19	0,028
Thermal diffusivity (mm ² /s)	69	11	3,7	0,96	0,11	0,75
Temperature increase (K)	0,3	0,5	1,0	8,0	1,3	2,5
Probe radius (mm)	15	6,4	6,4	6,4	6,4	15
Specimen thickness (mm)	30	10	10	10	15	30
Specimen diameter (mm)	90	40	40	40	40	90
Measurement time (s)	5	10	10	40	160	160
Power output (W)	4	3	2	0,5	0,25	0,1

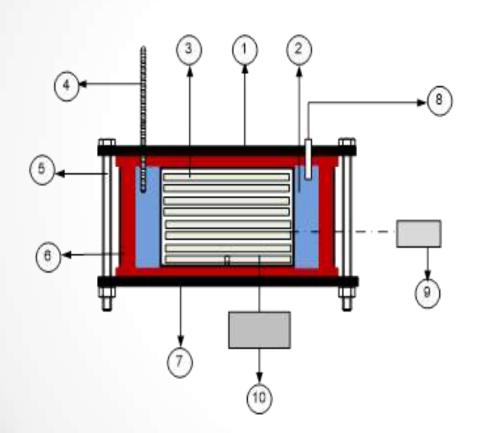
Modified Transient Plane Source

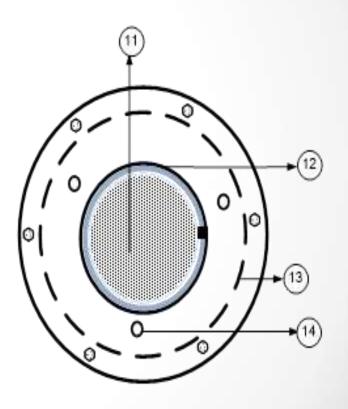
مقارنة بين الطرق المختلفة

Method	Temperature range	Uncertainty	Materials	Merit	Demerit
Guarded hot plate	80-800K	2%	Insulation materials, plastics, glasses	High accuracy	Long measurement timeplate large specimen size,low conductivity materials
Cylinder	4–1000K	2%	Metals	Temperature range simultaneous determination of electrical conductivity and Seebeck- coefficient possible	Long measurement time
Heat flow meter	-100-200 °C	3–10%	Insulation materials plastics, glasses, ceramics	Simple construction and operation	Measurement uncertainty relative measurement
Comparative	20–1300 °C	10–20%	Metals, ceramics plastics	Simple construction and operation	Measurement uncertainty, relative measurement
Direct heating (Kohlrausch)	400–3000K	2–10%	Metals	Simple and fast measurements	only electrically conducting materials
Pipe method	20–2500 °C	3–20%	Solids	Temperature range	Specimen preparation long measurement time
Hot wire ,hot strip	20–2000∘C	1–10%	Liquids, gases, low conductivi ty solids	Temperature range, fast, accuracy	Limited to low conductivity solids conductivity materials,
Laser flash	-100-3000∘C	3–5%	Solids, liquids	Temperature range, most solids, liquids and powders small specimen fast, accuracy at high temperatures	Expensive, not for , insulation materials
Photothermal photoacoustic	30–1500K	Not suffi ciently known	Solids, liquids gases, thin films	Usable for thin films, liquids and gases	Nonstandard, knowledge about accuracy

أهم الشركات المصنعة

Manufacturer type of instrument	Technique	Meas. range (W·m ⁻¹ ·K ⁻¹)	Max. temp. (°C)	Accuracy/ uncertainty	Sample dim. (number)
Hotdisk AB					7.
TPS series/Mica sensor	TPS	0.005-1800	1000	<5 %	Min. $\emptyset 13 \times 3 \text{ mm}^2$
Laser Comp					
FOX 300 HT	HFM	0.1-10	250	>1 % (40 °C)	≤ Ø51 mm
GHP 600	GHP	0.1-10	250		
Linseis Messgeräte GmbH					Both instr.:
XFA 500	XFA	0.1-2000	500	nn	$(1) \le \emptyset 25.4 \times 6 \text{ mm}^2$
LFA 1000	LFA	0.1-2000	1600	nn	(2) $10 \times 10 \times 6 \text{ mm}^3$
Netzsch Gerätebau (GmbH				
Titan 456	GHP	0.005-20	250	<2 %	$300 \times 300 \times \leq 100 \text{ mm}^3$
LFA 427/457	LFA	0.1-2000	≤2800	nn	all LFA/XFAs
LFA 447/467	XFA	0.1-2000	≤500	nn	$(1) \leq \emptyset 12.7 \times 6 \text{ mm}^2$
					(2) $10 \times 10 \times 6 \text{ mm}^3$
TCT 426	THW	<2	1250 (1500)	nn	$250 \times 125 \times 75 \text{ mm}^3$
Taurus					$250\times250~\text{mm}^2$
TLP 500 HT	GHP	0.01-0.5	400 (500)	nn	$500 \times 500 \text{ mm}^2$
TA Instruments					
DTC 300	HFM	0.1-40	300	3 % to 8 %	\emptyset 50 × 25.4 mm ²
DXF and DLF series	LFA	0.1-2000	≤2800	5 %	\leq Ø25.4 \times 6 mm ²
Ulvac Riko					
GH series	HFM	0.1-15	280	nn	\emptyset 50 × 20 mm ²
TC 9000	LFA	nn	1500	5 % (TD)	\emptyset 10 × 3 mm ²


أهمية إيجاد طريقة جديدة


• وبناءاً على ما تم عرضه فيما سبق لأكثر الطرق شيوعاً من حيث الاستخدام في تعيين الخواص الحرارية للمواد يتضح أنه لاتوجد طريقة موحدة يتم بها قياس الخواص الحرارية للمواد ولكن لكل طريقة حدود القياس والمواصفات الخاصة بها لذلك كان التفكير في إيجاد طريقة بسيطة وسهلة التطبيق لتعيين معدل التدفق الحرارى المار عبرأسطح المواسير ومن ثم يمكن تعيين التوصيلية الحرارية بتطبيق معادلة فوريير للتوصيلية الحرارية في الاتجاه القطرى للأشكال الأسطوانية فعن طريق الجهاز سيكون من السهل تعيين معدل التدفق الحرارى عبر أسطح المواسير في شكلها التجاري.

وصف جهاز الاختبار

رسم يوضح جهاز القياس

مكونات الجهاز

2- water 9-thermocable with an electrical switch

3- heater 10-AC-Automatic Voltage Regulator

4- Thermometer 11-insulator

5-Hex Head Holder 12-specimen

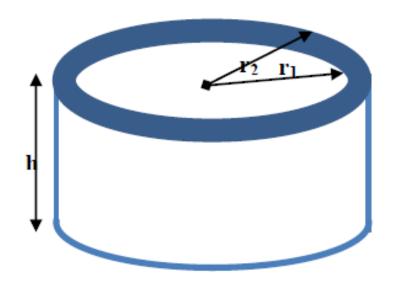
6-insulator 13-outer casing

7-lower flange 14 -thermocables hatches

خطوات التجربة

يتم لف المسخن الكهربى حول السطح الداخلى للعينة ثم تثبيت العينة بين الغطائين العلوى والسفلى و إحكام إغلاق المنظومة ويتم تثبيت الثمروكابل على السطح الداخلى للعينة وتشغيل الثرموكابل لتعيين الارتفاع فى درجة حرارة المياه بالفتح ات المخصصة له بالغطاء العلوى و يتم توصيل التيار الكهربائي بمثبت الجهد المتصل بالسخان بالكهرباء ومتابعة ارتفاع درجة حرارة السطح الداخلى للعينة وتسجيل القراءة لجميع العينات.

تسخين سطح العينة الداخلى يتم من درجة حرارة ٣٥ مئوية حتى الوصول إلى درجة ١٠٠ مئوية فى خلال فترة زمنية معينة تنتقل الحرارة فى هذه المدة الزمنية الى الماء المعزول تماماً عن الوسط المحيط لترتفع درجة حرارة المياه وكذلك الزمن اللازم للتجربة.


أولاً :حساب معدل التدفق الحرارى عبر عينة المواسير

- يتم تعيين كمية الحرارة المارة عبر سطح عينة المواسير والمخزنة في المياه من العلاقة الاتنة ·
 - $Q = m C_p \Delta T$ •
- حيث Q (كيلوجول), m الكتلة (كيلوجرام) C_p , الحرارة النوعية للمياه تقريبا (C_p , الكتلة (كيلوجرام درجة مئوية) الفرق في درجة حرارة المياه بعد مرور زمن التجربة وبقسمة كمية الحرارة على زمن التجربة (ثانية) يمكن تعيين معدل التدفق الحرارة بالوات

ثانياً تعيين التوصيلية الحرارية لعينة المواسير

- ومنها التوصيلية الحرارية يتم تعيينها من العلاقة الاتية
- حيث k التوصيلية الحرارية (جول/ثانية متر درجة مئوية) , k كمية الحرارة المنتقلة (جول), r_1 القطر الداخلى (متر) , r_2 القطر الخارجي (متر) , r_3 العينة (متر) , r_4 العينة (متر) , r_5 درجة حرارة سطح العينة الداخلى المقابل للسخان (درجة مئوية) , r_4 درجة حرارة السطح الخارجي ناحية المياه (درجة مئوية).

عينة من الكربون استيل SA53B ذات قطر داخلى (r_1) من الكربون استيل 38,5 (h) مم وقطر خارجى (r_2) مم 39,5

أولا حساب معدل الانتقال الحرارى المار بسطح العينة

- تم تثبیت العینة بالجهاز ثم لف المسخن حولها من الداخل وتشغیل مثبت الجهد الكهربائي وحقن 40 جرام میاه بدرجة حرارة T1 وقیاسها 28 درجة مئویة ورفع درجة حرارة السطح الداخلی للعینة وفقا للجدول التالی
- تم تعيين درجات حرارة المياه T2بعد انتهاء التجربة وقياسها 37 درجة مئوية وبتعيين كمية الحرارة المنتقلة عبر العينة والتي تم تخزينها في المياه المعزولة عن الوسط المحيط جيدا من خلال العلاقة
 - $Q = m Cp \Delta T = 0.04 \times 4178 \times 9 = 1504 Joul$ •
 - وبقسمة الناتج على زمن التجربة 296 ثانية يكون معدل انتقال الحرارة 5,08 جول/ثانية (وات).

معدل ارتفاع درجة حرارة العينة

Temperature (Co)	Time (Sec)
56	102
68	140
74	160
80	187
86	213
92	248
98	269
100	296

ثانياً حساب التوصيلية الحرارية لعينة الكربون استيل SA53B

$$Q = 2\pi kh \frac{T_1 - T_2}{\ln(r_2/r_1)}$$

$$1504 = \frac{2 \times 3.14 \times \times (100-44)}{\ln(44.5/39.5)}$$

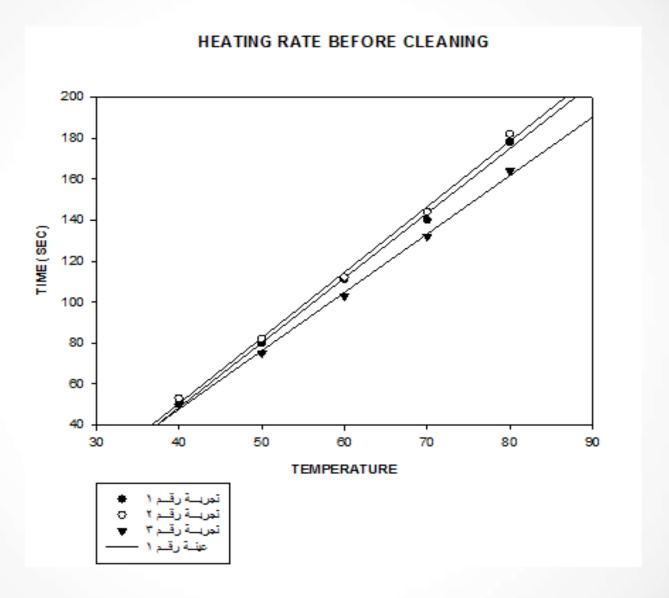
$$k = \frac{Q \ln(\frac{r_2}{r_1})}{2\pi h(T_1 - T_2)}$$

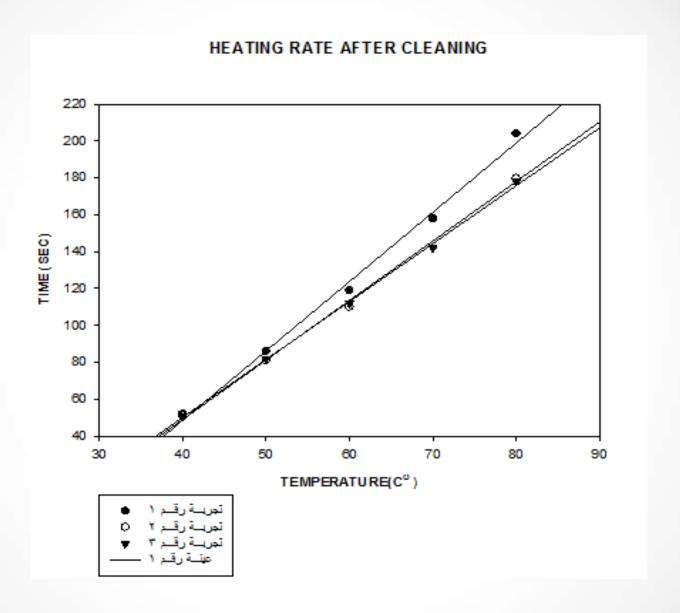
$$\mathbf{K} = \frac{1504 \text{ x ln } (44.5 / 39.5)}{2 \times 3.14 \times (0.0385 - 0.005) \times 56} = 15.6 \text{w/m.c}$$

• تم طرح 0,005 من الطول حيث تعبر هذه القيمة عن سمك طبقة البولى اليوريثان في كل من الغطائين العلوى والسفلى والتي لا يتم خلالها انتقال للحرارة وبمراجعة القيمة 5,21 وات /متر كلفن التي تم تعيينها لعينة الكربون استيل SA53B بقيمة التوصيلية الحرارية لنفس النوع من الكربون استيل والمذكورة بالمرجع بالمرجع الأمريكي American Power Research Institute EPRI وات /متر كلفن بحيود -5 % مما يعطى مؤشرات جيدة لمدى دقة الجهاز .

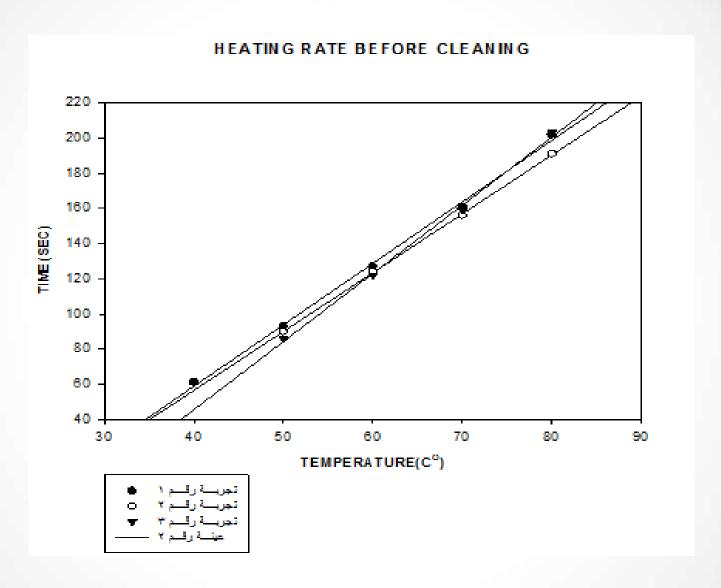
ثانيا تعيين معدل انتقال الحرارة لعينات مواسير قبل وبعد التنظيف

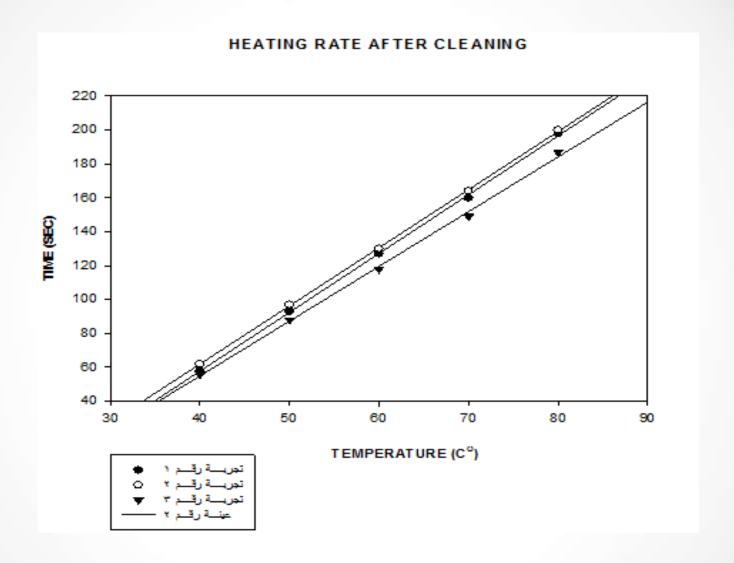
صورة فوتوغرافية لعينات المواسير قبل التنظيف

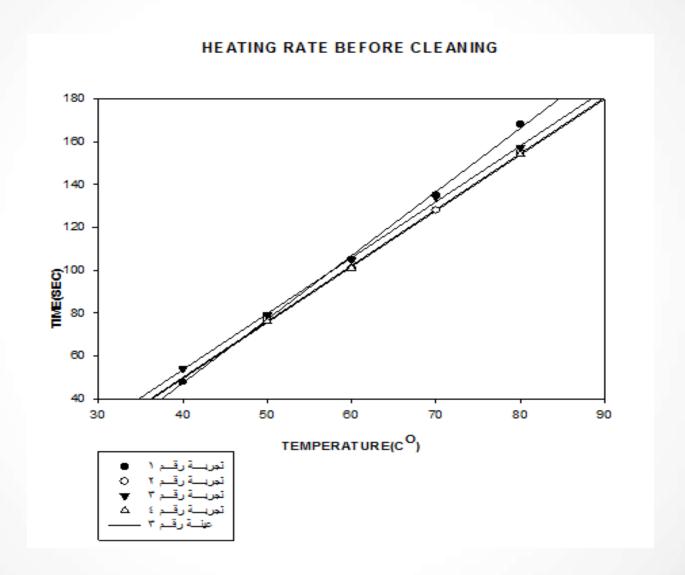


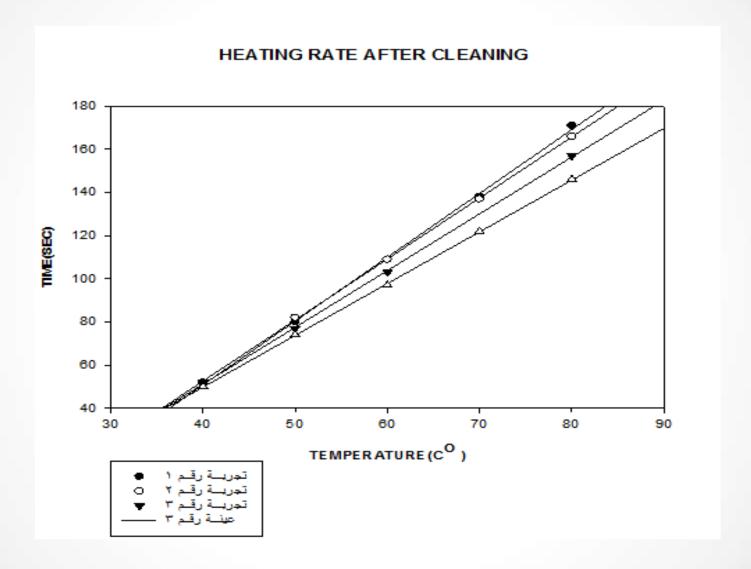


صورة فوتو غرافية لعينات المواسير بعد التنظيف

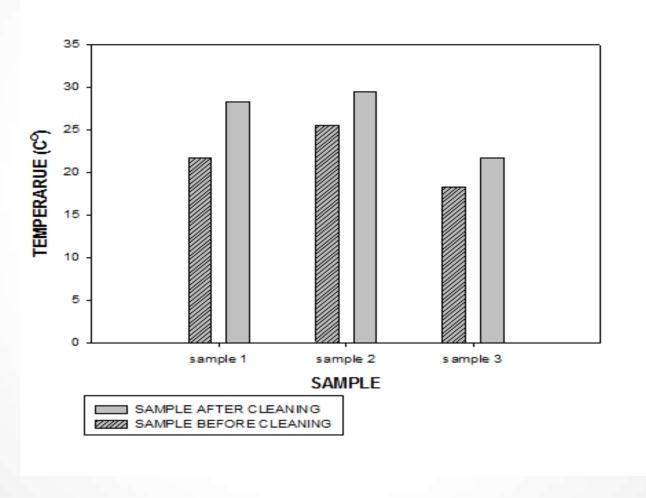

• تم تطبيق خطوات التجربة على العينات قبل وبعد التنظيف وبتسخين السطح الداخلي للعينات بالمعدل الموضح بالرسومات التالية للعينات رقم 3,2,1 على الترتيب قبل وبعد التنظيف والذي يبين معدل التسخين وذلك للحصول على التجارب المتطابقة في معدل التسخين.


عينة رقم (1)

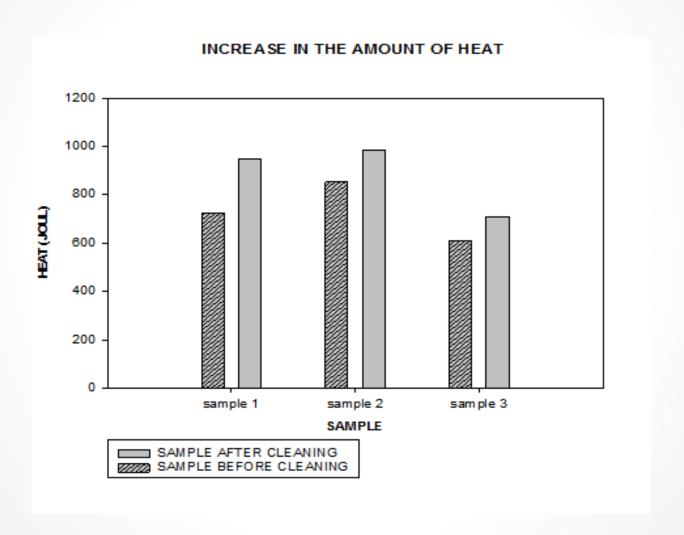



عينة رقم (2)

عينة رقم (3)

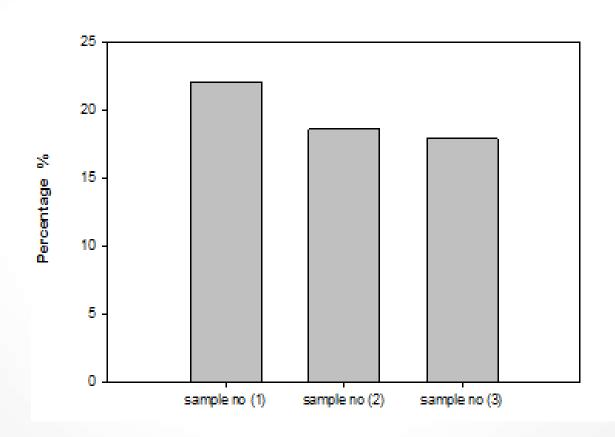


متوسطات نتائج العينات


ِقْم 3	عينة رقم 1 عينة رقم 2		عينة	رقم العينة		
ا بعد التنظيف	قبل التنظيف	بعد التنظيف	قبل التنظيف	بعد التنظيف	قبل التنظيف	المتوسط
2,2	1,8	3,00	2,6	2.8	2.2	الفرق في درجة حرارة المياه
711	612,00	986,5	852,7	947,5	725,7	كمية الحرارة (جول)
4,6	3,9	5,1	4,3	5,00	4,1	معدل انتقال الحرارة (وات)

الزيادة في فرق درجات حرارة المياه

TEMPERATURE DIFFERENCE



الزيادة في كمية الحرارة المنتقلة

النسب المئويةللزيادة فى معدل انتقال الحرارة للعينات الثلاث

Percentage of Heat Transfer Rate Incease

الاستنتاجات ومناقشة نتائج البحث

1- الآن أصبح من الممكن باستخدام هذا الجهاز المصنع بالكامل من خامات وامكانيات مصرية قياس معدل انتقال الحرارة للمواسير في صورتها التجارية بما يعنى التقييم الفعلى للمعدات قبل الشراء والحصول على أعلى معدات التبادل الحراري كفاءة وعلى رأسها المراجل البخارية .

2- لا حاجة إلى عينات ذات أبعاد خاصة لإجراء القياسات أو معالجة لأسطح العينات قبل القياس مما يعنى تقليل تكاليف اجراء التجارب إلى أقل مايمكن.

3- لا حاجة إلى معايرة الجهاز لعدم اعتماده على أجهزة تحليل أو مكونات دقيقة من المحتمل أن يحدث انحراف في دقتها بعد فترة زمنية من التشغيل.

4- سهولة حل المعادلات الرياضية الخاصة بالنموذج وعدم الحاجة إلى قاعدة بيانات كبيرة كما هو الحال في معظم طرق قياس الخواص الحرارية والتي قد تحتاج إلى الحاسوب.

- 5- استخدام الماء كمادة ماصة للحرارة وهي آمنة الاستخدام, متوفرة وذات خواص معلومة عند كل الظروف وتوفر أيضاً محاكاة معملية للوسط المحيط بمواسير المراجل البخارية.
- و- الحساسية العالية للجهاز حيث أن كل زيادة بمقدار 0.1 مئوية في درجة الحرارة يعطى زيادة بمقدار حوالي 34 ضعف في قيمة الطاقة المحسوبة وذلك باعتبار المقدار (m Cp) للماء مقدار ثابت (4,18 x80) = 334,4 = (4,18 x80) مما يزيد من امكانية رصد أي تغير ولو بسيط في مقدار الطاقة المنتقلة.
- 7- الزيادة في معدل الانتقال الحراري للمواسير بعد التنظيف حوالي 20% مما يستوجب ضرورة التفكير في ايجاد حلول جديدة مبتكرة وفعالة لتنظيف المراجل البخارية من نوعية مواسير اللهب من جهة المياه وذلك لما لوحظ من تأثير طبقة الرواسب على الانتقال الحراري للمواسير.